
15.095 Machine Learning Under a Modern Optimization Lens - Project Report
Language modeling using Tree-Based Methods: Can tree-based methods perform
autoregressive language modeling as well as neural networks?
Team Members: Seth Chatterton, Jason Jia

Abstract
We investigate the feasibility of tree-based methods, including XGBoost, Random Forest, and
CART, as alternatives to neural networks for autoregressive language modeling. Neural
networks are widely favored but computationally intensive, prompting an exploration of
tree-based methods as a more efficient option. Using the Cleaned Alpaca Dataset, we found
that tree-based methods, particularly Random Forest, exhibit 10-20% higher accuracy than
Feedforward Neural Networks in next character prediction within similar training times. The
findings suggest that tree-based methods can serve as viable and interpretable alternatives to
neural networks in natural language processing tasks on small to medium-sized datasets.

Problem and Motivation
Models based on deep learning methods have gained immense popularity as the model of
choice for autoregressive language modeling (predicting the next token/character/word in a
given context). Autoregressive language models like ChatGPT can generate interesting and
useful text when prompted.

However, these deep learning based methods are computationally expensive to train, and may
be overkill for certain sizes of datasets. On the other hand, tree-based models such as
XGBoost, RF, and CART can be easier to train and may be able to generate the same
predictions. This is also in light of the proof in class that neural networks can be equivalent to
trees under certain assumptions. Additionally, tree-based methods like CART can even be
interpretable, so we can see why the model generated the text that it did.

We would thus like to experiment with tree-based methods and compare their performance with
established neural network-based methods for autoregressive language modeling.

Data
We used the Cleaned Alpaca Dataset[1], which is a slightly modified version of the dataset used
to train the Alpaca large language model[2]. Alpaca is a fine-tuned version of the LLaMA[3] large
language model. The data consists of instructions for the model, inputs for those instructions,
and outputs that the model should try to recreate. We took subsets of the dataset to form
datasets of 3 sizes: small (20k rows), medium (400k rows) and large (1M rows).



Methods
Preprocessing
Our preprocessing involved the following key steps:

● Tokens: We split sequences of concatenated instruction, input, and output by character,
then take pairs of (10 consecutive characters, 11th character) as pairs of (X,Y).

● We add an ‘[EOS]’ (End Of Sequence) token to the end of the sequence, which is the
concatenation of the instruction, inputs and outputs. We include this so that at generation
time, if a model generates an [EOS] token, this lets us know that the model is done
generating an output.

● One-hot encoding of characters: Each character is mapped to an index, and each
character is converted to a vector using one-hot encoding. Each of these one-hot
encoded vectors is concatenated to make a binary input vector of size (vocabulary size)
* (context length)

● Train/test split: We use an 80/20 train-test split.

Tree-based methods

We tested several tree-based methods for autoregressive language modeling, including:
● CART
● XGBoost
● Random Forest

One of the other avenues we explored was to try to make token embeddings using these tree
based methods. Token embeddings can be created by using techniques such as word2vec[4], or
by learning them jointly in the first layer of deep learning methods. We wanted to explore
methods of creating token embeddings without the use of deep learning methods. This would
allow us to train end-to-end an autoregressive tree based model that can jointly learn
semantically dense token representations, and provide non-deep learning methods with the
potential for greater generalization to text.



We tried a number of different methods, but the core idea of the algorithm is as follows:
1) Initialize embeddings for every token randomly, with elements in the range [-1, 1] and

normalized to unit length.
○ These take the place of the one-hot encoded vectors, but are still concatenated

together for every token in the context window
2) Train an initial model to predict the next character from the embeddings of the characters

in the context window using these random embeddings
3) Keeping the model fixed, adjust the token embeddings in a direction which minimizes the

in-sample error
4) After every adjustment of the embeddings, use the new token embeddings to train a new

model
5) Repeat steps 3 through 5 until the model and embedding error no longer improves by

some threshold, or does not improve for some number of iterations

The key problem we face in the above algorithm however is how to update the embeddings.
We cannot backpropagate through a tree like we can in a neural network. We tried three
different methods of adjusting the embeddings at every iteration.

● Gradient Estimation
○ For every element in the current embedding vector, add a small positive or a

small negative delta to that embedding vector element.
○ Evaluate the loss of the model when the change is included. If it improves when

the delta is included, then we can accumulate that change in a vector of the
estimated gradient with respect to the loss.

○ Adjust the embedding vectors by the accumulated estimated gradient direction to
improve the loss after checking all vector deltas.

○ This is similar to a procedure known as gradient checking, which was more
common for verifying the gradients of neural networks before frameworks like
PyTorch and Tensorflow included automatic differentiation of model weights
throughout an entire network

○ One problem with this approach is that tree based methods have discontinuous
changes in them, so moving in a direction specified by a vector consisting of
accumulated estimated gradients may no longer be a direction which decreases
the loss compared to that of an individual element change.

● Noise Local Search
○ Produce a small random noise for every element of every vector
○ Add that noise to the best performing embeddings
○ Retrain the model using these new embeddings. If the loss improves, then we

can keep these new embeddings and assume that they moved in a direction that
is a more useful representation

○ This turned out to be the only method that could make any improvements at all
from iteration to iteration

● Mean Embedding Collection



○ For every prediction made by the model, move the embedding vector in a
direction that more closely aligns with the vector prediction made by the model,
defined by the weighted average of all other token embeddings using the
predicted probability of that token.

○ Move incorrect tokens in a direction away from the predicted weighted average
embedding vector

○ The idea behind this update method was to try to consolidate the embeddings of
similar vectors, and move dissimilar vectors away when they are incorrect

○ One problem with this is that we do not take into account changes in the input,
only changes in the output, so there is no guarantee that we are moving in a
direction that will actually improve the loss in retraining.

Each of the above techniques for updating the embeddings also has to contend with the fact
that retraining a model with the methods we have chosen produces new trees. The splits on
those trees are highly unstable from iteration to iteration, so we have no guarantee that after
retraining the model we have similar splits that make use of the adjusted embeddings that we
created.

Neural Network methods (Benchmark)
We use feedforward neural networks (FFNs) as our benchmark. We choose a straightforward
model architecture comprising an input layer, a hidden layer and an output layer. Here,
embedding size is the number of rows of the weight matrix representing the hidden layer. The
input to this model is the one-hot encoded context vector, which is the same input as the
tree-based methods receive and makes results more comparable between methods.

While we have also tried Transformers with positional encoding, it gave a training accuracy of
about 26.2% and test accuracy of about 27.5%, which are notably lower than expected. As the
implementation may not be fully correct, we chose to use FFNs as our main benchmark.

Evaluation

We evaluated our models in several different ways, including accuracy on a held out test set,
training time, interpretability, and the quality of generated text. We also evaluated the efficiency
of model training by looking at how long it takes certain methods to achieve a given accuracy.

Our key finding is that tree-based methods can sometimes outperform neural networks in next
character prediction. As seen in the figure below, tree-based methods have 10-20% higher
accuracy than neural networks on average, given similar training times and the small dataset
sizes we used.



Breaking down performance of tree-based methods by model, we find that Random Forest
performs the best, closely followed by XGBoost, CART and CART with random embeddings.



These are the summarized results of the set of parameters which gave the best test accuracy
for each model:

Model Embed
ding
size

Dataset
size

Epochs Train
Accuracy
(%)

Test
Accuracy
(%)

Training
Time (s)

Other
parameters

FFN 32 large 10 49.98 50.06 801.5 Hidden size =
128

CART with
random
embeddings

8 large - 83.56 60.99 28.4 depth=56

CART - large - 80.39 62.12 33.2 depth=129

XGBoost - large - 90.22 65.83 207.4 max_depth=50
boost _rounds
= 40

Random
Forest

- large - 90.36 66.64 86.7 estimators=40

See full results for tree-based methods in Appendix 1 and full results for neural network
methods in Appendix 2.

One hypothesis we have for why Random Forest performs best is because Random Forest
creates fully developed trees. This means that there is only one training example per leaf node
in each estimator, overfitting to the subset of data that each estimator is trained on. XGBoost on
the other hand uses “weak learners”, which try to limit the growth of the tree based on a
complexity parameter, leading to shallower trees. We can see that the best CART model is very
large at a depth of 129, probably to capture as many “rules” as possible. Using this insight, it
makes sense that a fully developed RF tree outperforms XGBoost, because each individual tree
is much more powerful at capturing individual “rules” about the order of how tokens are placed.

One result we found surprising is that CART with random embeddings performs nearly as well
as CART with one-hot encoded vectors. By random embedding we mean a random vector is
generated to represent each token, and those vectors are used anywhere the respective token
appears. What might be happening here is that CART can pick up on the useful association in
the vectors that appear by chance, since there is a high chance that at least one of the features
in the random embedding is related to or correlated with a vector element in another. Also, since
most of the vector values of the random embedding are probably unique, a CART model could
do something like use two splits in a row to bound the value of a specific letter from above and
below, using two splits to do the same thing as one split in the one-hot encoding scheme.
Additionally, since these random embeddings are about 4 times shorter than one-hot encoded
features, the model has to consider fewer features when training the model, which speeds up



training. Obviously however, random embeddings mean nothing and are not interpretable at all.
These were just meant to be a baseline to compare against the different embedding adjustment
methods.

None of the methods we used to try to update tree-based model word embeddings worked
better than simply using random embeddings. Part of this probably has to do with the fact that
the set of all possible embedding vectors is so huge, and the set of embedding vectors that are
useful and semantically meaningful is much smaller. If our methods for finding that small set of
semantically meaningful vectors is not good, then it is unlikely that we would be able to find a
set of semantically meaningful vectors. See Appendix 1 for results of our embedding update
methods. We only tested on the smallest dataset, because if we could not find an embedding
update algorithm that worked on that small dataset, then it would most likely not work on a
larger dataset.

The interpretability of individual trees also lends intuition to how predictions are made. For
example, in the best performing CART model, the root node asks if the previous character is a
comma, and if it is then the model predicts that the next character will be a space. Further, if the
previous character is not a comma but instead a space, and the character before that is not a
space, the model predicts 't'. We can see this clearly if we look at a visualization of the tree
(Appendix 3).

Below are examples of text generated by the top performing CART and Random Forest model,
given a 10-character prompt.

These text completions form complete words, and make a small amount of grammatical sense
from word to word. The sentences as a whole do not make grammatical sense however, and the
topics are not consistent over the course of a sentence. Additional context length would
probably fix this to some degree.



Impact
Our findings suggest that tree-based methods may be viewed as a viable alternative to neural
network methods for next character prediction in small to medium sized datasets (<1M training
examples).

CART models can be trained extremely quickly and are interpretable, allowing us to inspect the
reasons why the model predicted what it did. This suggests that the choice between neural
networks and tree-based methods is context-dependent, and could motivate the formulation of
alternative architectures of more interpretable mid-sized language models. For scenarios where
datasets are small and computing power is limited, tree-based methods could be a better choice
than neural networks for natural language processing tasks.

Our experiments indicate that using more data produces better results, and there is no reason
why the process couldn't scale to larger datasets. However, increasing the context lengths of
these models may require significant amounts of data.

Future Work

We can improve the results of our models in several ways.

● Using larger datasets would allow models to see more examples and produce better
results, and perhaps follow some of the scaling laws we see with large language models
today where feeding in an enormous amount of data leads to excellent performance. We
could increase the context lengths of our models if we had more data too, which would
give more contest to what token should be predicted next.

● Using a different tokenization scheme than individual characters could lead to better
results as well. For example, we could split training examples by bigrams, trigrams, by
spaces, or using byte pair encoding. Using a larger vocabulary would lead to very large
input vectors however, so it would also require a lot of data so that tokens could be seen
multiple times.

● We could try to create a mixed-integer optimization approach combining OCTs with
jointly finding optimal embeddings, such that the misclassification loss with a given
embedding representation is minimized. This would be very computationally expensive
to train however, given the 100+ depth of CART trees we see.

● We could try better search methods for finding tree-based model embeddings. For
example, if we use the above OCT approach, maybe we could create a cutting planes
approach to solve for the vectors to jointly solve for the embeddings, combined with a
local search for the OCT structure. An approach similar to our current methods with the
current models might be to use a genetic algorithm to try to find better word embeddings.

● We could try to find binary embedding vectors for our tree-based methods instead of
continuous vectors. This could potentially lead to more interpretable embeddings,
because it indicates categories. For example, maybe one element of the embedding is
“vowel or not vowel”, or “letters that come after c”, or something else that might be more
meaningful than a continuous vector.



Team Contributions
● Seth: Implementation of tree-based methods and tree based embedding search
● Jason: Implementation of neural network methods
● Together: project abstract, presentation and report

References
[1] Ruebsamen, G. 2023. Cleaned Alpaca Dataset.
https://github.com/gururise/AlpacaDataCleaned/tree/main
[2] Taori, R et al. 2023. Stanford Alpaca: An Instruction-following LLaMA model. Github
Repository https://github.com/tatsu-lab/stanford_alpaca
[3] Touvron, H et al. 2023. LLaMA: Open and Efficient Foundation Language Model. arXiv
preprint arXiv:2302.13971
[4] Mikolov, T et al. 2013. Efficient Estimation of Word Representations in Vector Space.
Advances in neural information processing systems, 2013

Appendix
Appendix 1: Performance of tree-based methods

Model Embedding
size

Dataset
size

Epochs Train
Accuracy
(%)

Test
Accuracy
(%)

Training
Time (s)

Other
params

CART -
random
embeddin
gs

8 small - 85.16 45.39 0.43 depth=36

CART -
random
embeddin
gs

8 medium - 84.66 58.47 10.28 depth=45

CART -
random
embeddin
gs

8 large - 83.56 60.99 28.35 depth=56

CART -
mean
embeddin
g
collection

8 small 20 85.29 45.81 58.88 depth=38

CART -
gradient
estimation

8 small 5 85.28 44.23 207.95 depth=31

CART - 8 small 100 85.66 44.31 49.86 depth=32

https://github.com/gururise/AlpacaDataCleaned/tree/main


noise
search

CART - small - 79.85 47.26 0.31 depth=71

CART - medium - 80.83 59.78 11.78 depth=118

CART - large - 80.39 62.12 33.19 depth=129

XGBoost - small - 97.94 52.99 39.31 max_dept
h=50
boost
_rounds =
200

XGBoost - medium - 92.74 64.09 108.10 max_dept
h=50
boost
_rounds =
50

XGBoost - large - 90.22 65.83 207.365 max_dept
h=50
boost
_rounds =
40

Random
Forest

- small - 97.94 55.95 4.51 estimators
=200

Random
Forest

- medium - 92.73 65.06 40.75 estimators
=50

Random
Forest

- large - 90.36 66.64 86.70 estimators
=40

Appendix 2: Performance of neural network methods (Benchmark)

Model Embeddin
g size

Dataset
size

Epochs Train
Accuracy
(%)

Test
Accuracy
(%)

Training
Time (s)

FFN 8 small 100 50.00 40.64 95.1

FFN 8 small 50 46.44 40.46 46.3

FFN 8 small 25 43.34 36.20 23.9

FFN 8 small 10 38.40 36.30 9.5



FFN 16 small 100 61.54 39.55 93.4

FFN 16 small 50 57.61 40.85 47.3

FFN 16 small 25 51.35 38.57 24.7

FFN 16 small 10 44.03 36.07 9.8

FFN 32 small 100 80.27 41.06 107.5

FFN 32 small 50 71.84 40.20 52.4

FFN 32 small 25 63.54 41.61 26.0

FFN 32 small 10 51.45 40.62 10.4

FFN 8 medium 10 42.97 42.96 228.6

FFN 16 medium 10 46.88 46.16 232.6

FFN 32 medium 10 50.48 50.06 241.9

FFN 8 large 10 43.14 43.56 884.4

FFN 16 large 10 46.91 46.84 839.7

FFN 32 large 10 49.98 50.06 801.5

Appendix 3: Supporting figures demonstrating the interpretability of tree-based methods



Appendix 4: Additional text completions

Top performing CART model:
'Where is the best place to go skiing?\n\nsurface area of the
triangle abc is simple language processes that release oxygen to
generate longterm strategies for liquids adequality.' 

'abcdefghijk fears and is chairs has excerpts to support their
thoughts and extract if wealth, and prevent certain traits and
loyalty.\n\n. promote green energy consumption of new destination or
resoup platform.' 

'The best place to go skiing is mostly driven by factoring outside
and easier months.'


